Abstract
Several systems of microfilaments (MF) associated with adherens-type junctions between adjacent retinal pigment epithelial (RPE) cells and between these cells and the substratum play an important role in maintaining the integrity and organization of the RPE. They include prominent, contractile circumferential MF bundles that are associated with the zonula adherens (ZA) junctions. In chick RPE, these junctions are assembled from smaller subunits thus giving greater structural flexibility to the junctional region. Because the separation of the junctions requires trypsin and low calcium, both calcium-dependent and -independent mechanisms are involved in keeping adjacent RPE cells attached to one another. Another system of MF bundles that crosses the cell at the level of ZA junctions can be induced to form by stretching the epithelium. The MF bundles forming this system are oriented in the direction in which the RPE is stretched, thereby preventing the overextension of the cell in any one direction. The system may be useful as an indicator of the direction in which tension is experienced by RPE during development of the eye, in animal models of disease and during repair of experimentally induced wounds. Numerous single-cell wounds resulting from death of RPE cells by apoptosis at various stages of repair are normally present in developing chick and adult mammalian RPE. These wounds are repaired by the spreading of adjacent RPE cells and by the contraction of MF bundles oriented parallel to the wound edge, which develop during this time. As a result of the spreading in the absence of cell proliferation, the RPE cells increase in diameter with age. Experimentally induced wounds made by removing 5-10 RPE cells are repaired by a similar mechanism within 24 h. In repair of larger wounds, over 125 microns in width, the MF bundles oriented parallel to the wound edge characteristic of spreading cells are later replaced by stress fibers (SFs) that run perpendicularly to the wound edge and interact with the substratum at focal contacts (FCs) as RPE cells start to migrate. Cell proliferation is induced in cells along the wound edge only when the wounds are wide enough to require cell migration. In the presence of antibodies to beta-1-integrins, a component of FCs, cell spreading is not prevented but both cell migration and cell proliferation are inhibited. Thus, only the organization of the cytoskeleton characteristic of migrating RPE cells that have SFs that interact with the substratum at FCs, is associated with the induction of cell proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.