Abstract

The distribution of actin microfilament bundles in cell lines 3T3B, CHO, HeLa and CLID extracted with 0.1% Triton X-100 was examined by indirect immunofluorescence using human actin antibodies and by electron microscopy of whole cells grown directly on support grids. Anchorage dependence as determined by growth in soft agar and tumorigenicity in nude mice was also investigated. Immunofluorescent staining showed that CHO and HeLa cells have normal numbers and distributions of actin microfilament bundles as compared with similarly spread control 3T3B cells. A significant fraction of the mouse CLID cells showed comparable numbers of microfilament bundles as 3T3B cells but their distribution was markedly different. In many cases the bundles radiated from a region close to the cell's centre or near its projections and usually penetrated the projections. The presence of diffuse staining in 4% of the cell population also indicated the existence in these cells of disorganized actin. Electron microscope studies of well spread regions of negatively-stained, Triton-extracted cells corroborated the observations made with the immunofluorescence technique. In 3T3B, CHO and CLID cells abundant microtubules were found, colinearly arranged with actin filaments in the thin cytoplasmic extensions. While CLID, CHO and HeLa cells showed the capacity to grow in soft agar, only CLID and HeLa cells produced tumours in athymic nude mice. The observations suggest that a reduction or disorganisation of the actin microfilament bundles may not in itself be essential at least for the non-virally transformed cells studied to show anchorage independence or to produce tumours in nude mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.