Abstract
The microfibrous structured catalytic packings for miniature fuel processor consisting of a methanol steam reformer and a subsequent CO cleanup train has been investigated experimentally. A highly void and tailorable sinter-locked microfibrous carrier consisting of 3.5 vol% 8 μm diameter Ni-fibers is used to entrap 35 vol% 150–250 μm catalyst particulates for both methanol steam reforming (MSR) and CO preferential oxidation (PROX). We demonstrate a microfibrous entrapped Pd-ZnO/Al 2O 3 catalyst packings for high efficiency hydrogen production by the MSR reaction. The use of microfibrous entrapment technology significantly enhances the catalyst utilization efficiency by a 4-fold improvement of the weight hourly space velocity (WHSV), compared to the single Pd–ZnO/Al 2O 3 particulates as keeping the methanol conversion at >98%. The microfibrous entrapped Pt–Co/Al 2O 3 catalyst packings can drive the CO from 2% down to <50 ppm at 150 °C with O 2/CO ratio of 1 using a gas hourly space velocity (GHSV) of 32,000 h −1. Finally, a prototype fuel processor system integrating MSR reformer and CO PROX train is demonstrated as three reactors in series. Such test rig is capable of producing roughly 1700 standard cubic centimeter per minute (sccm) PEMFC-grade H 2 (equivalent to ∼163 W of electric power) in a longer-term test, in which the MSR reactor is operated at 300 °C using a methanol/water (1/1.1, mole) mixture WHSV of 9 h −1 and CO PROX reactors at 150 °C using an O 2/CO molar ratio of 1.3, respectively. In the test of this prototype system, MSR reactor delivers >97% methanol conversion throughout the entire 1200-h test; the CO cleanup train placed in line after 800-h MSR illustrates the capability to decrease the CO concentration from ∼3.5% to ∼1% at PROX-1 and then to less than 20 ppm at PROX-2 until to the end of test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.