Abstract

Few-layer black phosphorus (BP), as the most alluring graphene analogue owing to its similar structure as graphene and thickness dependent direct band-gap, has now triggered a new wave of research on two-dimensional (2D) materials based photonics and optoelectronics. However, a major obstacle of practical applications for few-layer BPs comes from their instabilities of laser-induced optical damage. Herein, we demonstrate that, few-layer BPs, which was fabricated through the liquid exfoliation approach, can be developed as a new and practical saturable absorber (SA) by depositing few-layer BPs with microfiber. The saturable absorption property of few-layer BPs had been verified through an open-aperture z-scan measurement at the telecommunication band. The microfiber-based BP device had been found to show a saturable average power of ~4.5 mW and a modulation depth of 10.9%, which is further confirmed through a balanced twin detection measurement. By integrating this optical SA device into an erbium-doped fiber laser, it was found that it can deliver the mode-locked pulse with duration down to 940 fs with central wavelength tunable from 1532 nm to 1570 nm. The prevention of BP from oxidation through the "lateral interaction scheme" owing to this microfiber-based few-layer BP SA device might partially mitigate the optical damage problem of BP. Our results not only demonstrate that black phosphorus might be another promising SA material for ultrafast photonics, but also provide a practical solution to solve the optical damage problem of black phosphorus by assembling with waveguide structures such as microfiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.