Abstract
Lithium-ion batteries (LIBs) have an extremely diverse application nowadays as an environmentally friendly and renewable new energy storage technology. The porous structure of the separator, one essential component of LIBs, provides an ion transport channel for the migration of ions and directly affects the overall performance of the battery. In this work, we fabricated a composite separator (GOP-PH-ATP) via simply laminating an electrospun polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) nanofibrous membrane coated with attapulgite (ATP) nanoparticles onto a PP nonwoven microfibrous fabric, which exhibits a unique porous structure with a pore-size gradient along the thickness direction that ranges from tens of microns to hundreds of nanometers. As a result, besides the enhanced thermal stability given by the chosen materials, the GOP-PH-ATP separator was endowed with a superhigh porosity of ~95%, strong affinity with electrolyte, and great electrolyte uptake of ~760%, thus effectively enabling an ionic conductivity of 2.38 mS cm-1 and a lithium-ion transference number of 0.62. Furthermore, the cell with the GOP-PH-ATP separator shows an excellent cycling performance with a capacity retention of 91.2% after 150 cycles at 1 C, suggesting that the composite separator with a pore-size gradient structure has great potential to be applied in LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.