Abstract
Less than half of e-waste plastics are sorted worldwide, and this rate is likely to decline as major processing countries have banned importation of e-waste plastics. This forces the development of decentralized processing facilities, also known as microfactories. The present work investigates the recyclability of different grades of acrylonitrile-butadiene-styrene (ABS) copolymer, polycarbonate, and polypropylene, which were found to be very abundant in a recycling site in the UK. The determination of the matrix relied on the resin identification codes imprinted in the e-waste plastics and subsequent Fourier-transform infrared spectroscopy (FTIR). Melt-blend extrusion technology enabled the valorization of the wasted thermoplastics as 3D filament without significant degradation of the polymers. The recycled materials maintained the tensile strength at around 2.5 MPa in agreement with the specifications offered by virgin polymers. Further characterization was done by means of laser microscope, thermogravimetric analysis, and X-ray fluorescence to determine the commercial viability of the recycled filament. A modified solvent-based method was developed with acetone to remove the brominated flame retardants: 25 g/100 mL, 30 min of contact time, and 4 extraction steps. The FTIR results show that the degradation of the rubbery dispersed phase corresponding to the butadiene can be accumulated in the less soluble fraction of the extracted ABS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.