Abstract

Several important techniques for fabricating micro-cavity semiconductor lasers including surface emitting lasers have been developed. Reactive ion beam etch (RIBE) for GaA1As and GaInAsP is employed and its condition for vertical fine etch under low damages and removal of residual damages are made clear. Passivation by sulfur is introduced to the fabrication process. Regrowth techniques for DII structures by LPE and MOCVD has been established. Some device applications are discussed. 1. MICRO-ETCHING PROCESS Micro-cavity lasers including a vertical cavity surface emitting laser1 are attracting the research interest for optical parallel processing and parallel light wave systems. In order to realize micron-order or sub-micron laserdevices the technology of micro-fabrication must be established. In this study the total fabrication technology has been almost completed. First fine and low damage etching condition by ultrahigh vacuum background RIBE using a Cl2 gas has been made clear. We have found an isotropic etching condition for the vertical side wall formation and good mask traceability i. e. the acceleration voltage is 500 V and substrate temperature is 150 C with a 5000A thickness Si02 mask. Residual damages induced on the surface and the side wall are characterized by photo-luminescence and making stripe lasers. Figure 1 is the histogram of the nominal threshold current density for (a) oxide-defined stripe lasers (b) RIBE etched and LPE regrown BH-lasers using an LPE grown DII wafer (LPE/LPE) and (c) RIBE etched

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call