Abstract

Micropatterns were fabricated on polypropylene (PP) surfaces using the hot embossing technique with various temperatures ranging from 160 to 175 °C and applying force conditions from 100 to 300 N. To evaluate the replication quality, an effective filling ratio of 1 indicates that the volume of the formed pattern is similar to the mold cavity volume. From the results, the filling ratio increased with increasing the embossing temperature. For instance, under a constant force of 100 N, the filling ratio of polypropylene (PP) with small square arrays (pattern SS) increased from 0.08 to 0.41 when the embossing temperature was raised from 160 to 175 °C, respectively. With the increase of applied force, the filling ratio also increased. At an imprinting temperature of 175 °C and an applied force of 300 N, the highest effective filling ratio that was achieved was approximately 0.99. Furthermore, the effect of PP with different melt flow indexes (MFIs) on the filling ratio was investigated. For food packaging applications, a micropatterned PP sheet was heat-sealed with a biaxially oriented polypropylene (BOPP) film. The micropatterned PP sheet demonstrated easy-opening properties by varying sealing contact areas and micropattern geometries between the sheet and the BOPP film. All micropatterned PP sheets with an MFI of 25 g/10 min exhibited an easy peel property with adhesive failure characteristics at a heat-sealing temperature of 150 °C and a dwell time of 3 s. There was no residue on the PP substrate surface. The overall findings are beneficial in understanding the hot embossing technology for fabricating micropatterns on polymer surfaces, and it can be applied in an easy peel property for packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.