Abstract

Multi-organ-on-a-chip devices have attracted extensive attention because they hold great potential for advancing drug discovery and development by recapitulating human physiological conditions. However, they often lack on-chip analytical technologies for the in situ non-invasive real-time monitoring of organ tissue responses to pharmaceutical compounds over extended durations. Here, we introduce the microfabrication of a multi-organ-on-a-chip by integrating two indispensable components into a polydimethylsiloxane (PDMS)-based microfluidic device: a pneumatic-actuated micropump to generate a circulation flow for organ-organ interaction and a parylene-insulated microelectrode array (MEA) for electrophysiological analysis. We demonstrated that the pumping performance of the micropump was sufficient for recapitulating the metabolite interaction, and the measured impedance magnitude was comparable to that of state-of-the-art MEA devices. The experimental results suggest that the present microfabrication has potential applications such as the measurement of electrophysiological parameters under recapitulating metabolite interaction, enabling more comprehensive drug testing in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call