Abstract
3D pH-responsive microstructures by two-photon lithography (2 PL) in poly(ethylene glycol) diacrylates (PEG-DAs) hydrogels are particularly suitable for biosensing as structural and functional components. So far, 2 PL patterning of hydrogels have been successfully achieved only for low molecular-weight (≤ 700 Da MMw) PEG-DAs, which is unfortunately not mechanically compliant with single cell and tissues stiffness. We report an optimised protocol to setup a 2 PL fabrication of high MMw (10 kDa) PEG-DA-based formulations, suitable for pH sensing in soft biological tissues. Two different shapes (pyramids and domes) were obtained and tested for mechanical characterization and pH responsiveness at the microscale. Fast pH-induced swelling (<15 min) in microstructures allows for envisioning high MMw PEG-DA-based micro and nanostructures via 2 PL as a tunable pH responsive tool for biosensing applications in cell and tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.