Abstract

Magnetic shape memory alloys are emerging multifunctional materials that enable applications like high‐stroke actuation, solid‐state refrigeration, and energy harvesting of waste heat. Thin films of these alloys promise integration in microsystems to exploit their multifunctional properties at the microscale. However, the microfabrication process of these Heusler alloys is difficult. Herein, different etching techniques are investigated for the microfabrication of epitaxial Ni‐Mn‐Ga films, the encountered challenges are explained, and ways to overcome them are demonstrated. The results show that wet chemical etching is suitable for large patterned structures, while reactive ion etching of Ni‐Mn‐Ga films is unsuitable due to redeposition. For patterning structures below 10 μm with clean and sharp edges, the best results are obtained by ion beam etching with adjusted sample‐stage tilt. Finally, a microfabrication process using Si microtechnology to fabricate partially freestanding structures is demonstrated. These findings give guidelines for the fabrication and integration of these smart materials in Si‐based microsystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.