Abstract

This paper presents the modeling of permanent-magnet (PM) generators for use in microscale power generation systems. The generators are three-phase, axial-flux, synchronous machines, each consisting of a multipole, surface-wound stator and PM rotor. The machines are modeled by analytically solving two-dimensional (2-D) magneto-quasi-static Maxwell's equations as a function of radius. The 2-D field solutions are then integrated over the radial span of the machine to determine circuit parameters such as open-circuit voltage and inductance as well as hysteresis loss in the stator core and eddy current losses in the stator core and windings. The model provides a computationally fast method to determine power and efficiency of an axial-flux PM machine as a function of geometry, speed, and material properties. The open-circuit voltage predictions are also shown to agree well with 3-D finite-element analysis simulation results. 1700

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.