Abstract

The digital electrostatic electron beam array lithography concept under development at the Oak Ridge National Laboratory proposes performing direct write electron beam lithography with a massively parallel array of electron emitters operating simultaneously within a digitally programmable microfabricated field emitter array (FEA). Recently we have concentrated our research efforts on the field emission (FE) properties of deterministically grown vertically aligned carbon nanofibers (VACNFs). We have measured the FE properties of isolated VACNFs using a moveable current probe and found that they have low FE turn-on fields and can achieve stable emission for extended periods of time in moderate vacuum. In order to use the VACNF in microfabricated FEA devices we have subjected them to a variety of processing phenomenon including reactive ion etching and plasma enhanced chemical vapor deposition, and found them to be quite robust. Using these processes we have fabricated operational gated cathode structures with single VACNFs cathodes. The issues involved in this fabrication process and the performance of these devices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.