Abstract

Instrument miniaturization is one way of addressing the issues of sensitivity, speed, throughput, and cost of analysis in DNA diagnostics, proteomics, and related biotechnology areas. Microfluidics is of special interest for handling very small sample amounts, with minimal concerns related to sample loss and cross-contamination, problems typical for standard fluidic manipulations. Furthermore, the small footprint of these microfabricated structures leads to instrument designs suitable for high-density, parallel sample processing, and high-throughput analyses. In addition to miniaturized systems designed with optical or electrochemical detection, microfluidic devices interfaced to mass spectrometry have also been demonstrated. Instruments for automated sample infusion analysis are now commercially available, and microdevices utilizing chromatographic or capillary electrophoresis separation techniques are under development. This review aims at documenting the technologies and applications of microfluidic mass spectrometry for the analysis of proteomic samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.