Abstract

This paper presents a microfabricated Clark-type sensor which exactly can measure dissolved oxygen in the cell containing solution. We designed and fabricated a microfabricated Clark-type sensor for measuring the oxygen respiration level of few cells. The microfabricated Clark-type sensor is composed of 3-electrodes on a glass substrate, a FEP (Fluorinated ethylene propylene) oxygen-permeable membrane, and PDMS (Polydimethylsiloxane) reservoir for storing few cells containing solution. The microfabricated Clark-type sensor was fabricated using MEMS technology. Thin-film Ag/AgCl was employed as a reference electrode and its durability was verified by obtaining a stable open circuit potential versus a commercial Ag/AgCl electrode for 2 hours. Response time, reproducibility and linearity of the fabricated oxygen sensor were examined by amperometry. The fabricated Clark-type sensor showed 40 sec of 90% response time, reproducibility with 1.37 nA standard deviation of 97.03 nA mean in the full-oxygen state and 0.26 nA standard deviation of 3.25 nA mean in the zero-oxygen state, and an excellent linearity with a correlation coefficient of 0.994.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.