Abstract

CMK-3 nanoporous carbon was prepared and used as an efficient sorbent for microextraction in packed syringe of rosmarinic acid in Rosmarinus officinalis L. (rosemary). In the proposed method, only 2 mg of the nanoporous material, inserted between a syringe’s barrel and needle, was sufficient for the extraction with minimum consumption of organic solvents. Sample preparation was performed on the packed bed using a laboratory-made programmable apparatus. The apparatus was designed and used for automation of the conditioning, sampling, washing and elution steps of the method, and increasing the reproducibility of the experiments. For optimization of the experimental parameters, a central composite design method was used. Under the optimized conditions (i.e., number of adsorption cycles 14 times, number of elution cycles ten times and volume of elution 100 μL), an extraction recovery of 90 (±4.5) % was obtained for rosmarinic acid. The same packing bed could be used for at least 80 extractions without significant changes in its properties. The efficiency of the nanoporous sorbent was found to be superior to that of activated carbon, by a factor of about 17. The proposed method was successfully applied to the extraction of three rosemary samples before analysis by HPLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call