Abstract
Models of microexplosive atomization of two-liquid unmixed drops under high-temperature heating are developed. Two most common mechanisms, namely, superheating of interphase boundary and critical bubble size, are chosen as atomization criteria. Two mathematical models, one based on solution of heat conduction equation and the other on VOF, are presented. The studied drops contain rapeseed oil and aqueous suspension of graphite. Experiments were conducted to determine the time lag of atomization of moving two-liquid unmixed drops under high-temperature heating. The theoretical and experimental atomization time lag values are found to be in satisfactory agreement. The results can be used to develop existing and create new gas-vapor-droplet technologies in chemical and petroleum engineering fields because they help predict the conditions of intense secondary atomization of heterogeneous drops by microexplosive dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.