Abstract

BackgroundA molecular population genetics understanding is central to the study of ecological and evolutionary functional genomics. Population genetics identifies genetic variation and its distribution within and among populations, it reveals the demographic history of the populations studied, and can provide indirect insights into historical selection dynamics. Here we use this approach to examine the demographic and selective dynamics acting of a candidate gene involved in plant-insect interactions. Previous work documents the macroevolutionary and historical ecological importance of the nitrile-specifier protein (Nsp), which facilitated the host shift of Pieridae butterflies onto Brassicales host plants ~80 Myr ago.ResultsHere we assess the microevolutionary dynamics of the Nsp gene by studying the within and among-population variation at Nsp and reference genes in the butterfly Pieris rapae (Small Cabbage White). Nsp exhibits unexpectedly high amounts of amino acid polymorphism, unequally distributed across the gene. The vast majority of genetic variation exists within populations, with little to no genetic differentiation among four populations on two continents. A comparison of synonymous and nonsynonymous substitutions in 70 randomly chosen genes among P. rapae and its close relative Pieris brassicae (Large Cabbage White) finds Nsp to have a significantly relaxed functional constraint compared to housekeeping genes. We find strong evidence for a recent population expansion and no role for strong purifying or directional selection upon the Nsp gene.ConclusionsThe microevolutionary dynamics of the Nsp gene in P. rapae are dominated by recent population expansion and variation in functional constraint across the repeated domains of the Nsp gene. While the high amounts of amino acid diversity suggest there may be significant functional differences among allelic variants segregating within populations, indirect tests of selection could not conclusively identify a signature of historical selection. The importance of using this information for planning future studies of potential performance and fitness consequences of the observed variation is discussed.

Highlights

  • A molecular population genetics understanding is central to the study of ecological and evolutionary functional genomics

  • In order to extend these insights down to a microevolutionary level where we can eventually directly examine ongoing selection dynamics, here we present the results of a molecular population genetic study of nitrile-specifier protein (Nsp) in Pieris rapae butterflies (Pieridae, Lepidoptera) which feed upon flowering host plants in the Angiosperm order Brassicales

  • Molecular variation We examined variation in two segments of the Pra Nsp gene (Pra Nsp-D2 and Pra Nsp-D3), covering Nsp domains 2 and 3, as well as the exons of five reference genes: isocitrate dehydrogenase (Idh), glyceraldehyde dehydrogenase (Ga3pdh), arginine kinase (ArgKinase), Wingless and a portion of the mitochondrially-encoded Cytochrome oxidase I (COI) gene

Read more

Summary

Introduction

A molecular population genetics understanding is central to the study of ecological and evolutionary functional genomics. Population genetics identifies genetic variation and its distribution within and among populations, it reveals the demographic history of the populations studied, and can provide indirect insights into historical selection dynamics We use this approach to examine the demographic and selective dynamics acting of a candidate gene involved in plant-insect interactions. Previous work documents the macroevolutionary and historical ecological importance of the nitrile-specifier protein (Nsp), which facilitated the host shift of Pieridae butterflies onto Brassicales host plants ~80 Myr ago. In order to extend these insights down to a microevolutionary level where we can eventually directly examine ongoing selection dynamics, here we present the results of a molecular population genetic study of Nsp in Pieris rapae (small cabbage white) butterflies (Pieridae, Lepidoptera) which feed upon flowering host plants in the Angiosperm order Brassicales. Recent study documents the increase in glucosinolate complexity along the Brassicales phylogeny, suggesting that chemical defense complexity increased over time [17] (and unpublished data from Wheat et al.)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call