Abstract
The aim of this study was to explore the potential of a combined chemical and microbiological approach as part of a study of organic carbon oxidation processes in sediments. An assessment of microbiological diversity using molecular techniques was carried out in combination with high resolution chemical measurements at the sediment-water interface of a coastal lagoon affected by eutrophication in autumn 2000. There was a 0.2 mm overlap between the O2 and H2S profiles. pH showed a maximum just above the sediment-water interface coinciding with an oxygen maximum, suggesting photosynthetic activity, and a minimum coinciding with the O2-H2S interface. The redox potential was high in bottom water and surface sediment, reflecting the presence of oxygen and oxides, and reached low values after a step-wise decrease at -18 mm. Reduction of Fe occurred within the biofilm at the O2-H2S interface and was mostly due to reduction by H2S. The elevated concentrations of dissolved Mn in the oxic water may have been caused either by in situ production within organic aggregates or lateral water flow from sites nearby at which Mn2+ diffuses out of the sediment. Sequences related to sulphur chemolitotrophs were retrieved from the biofilm samples, which is consistent with the small overlap between O2 and H2S observed in this biofilm. Although the resolution of techniques used was different, sequencing results were consistent with chemical data in delineating the same horizons according to redox, pH or ecological properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.