Abstract

In oocyte cryopreservation programs, vitrification has overthrown conventional slow freezing both in veterinary and human medicine. In animals, its feasibility in field conditions makes it the preferred technique for the safeguard of genetic resources from zoo or wild animals, including threatened felids, for which the domestic cat is an excellent model. However, many cellular injuries, such as cytoskeleton, mitochondria and meiotic spindle alterations, DNA damage, zona pellucida hardening and cumulus cell loss, might occur following vitrification. After warming, although the exact mechanisms are still unclear, degeneration is a frequent outcome for cat vitrified oocytes. For immature (germinal vesicle) gametes, in vitro maturation after warming is a challenge, and cleavage after fertilization barely reaches 15–30%, while for mature (metaphase II) cryopreserved gametes it can get to 30–50%. Anyway, the progression to late embryos stages is often impaired, and improvements are needed. Standard cryopreservation protocol and the use of conventional in vitro culture systems after warming may not be enough for vitrified oocytes to recover and demonstrate their full developmental potential. Physical or chemical factors applied to oocytes undergoing vitrification, as an enrichment to the vitrification step, or to the culture microenvironment, could create more favorable conditions and promote vitrified oocyte survival and development. From the use of three-dimensional culture systems to the regulation of metabolic activities and cellular pathways, this review aims to explore all the possibilities employed so far, including the studies performed by our own lab, and the future perspectives, to present the most effective strategies for cat oocyte vitrification and the best time for their application (i.e., before, during, or after vitrification-warming).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.