Abstract

Rheumatoid arthritis (RA) represents an insidious autoimmune inflammatory disorder that severely lowers the life quality by progressively destructing joint functions and eventually causing permanent disability, posing a serious public health problem. Here, an advanced theranostic probe is introduced that integrates activatable second near-infrared (NIR-II) fluorescence imaging for precise RA diagnosis with multi-pronged RA treatments. A novel molecular probe comprising a long-wavelength aggregation-induced emission unit and a manganese carbonyl cage motif is synthesized, which enables NIR-II fluorescence activation and concurrently releasing therapeutic carbon monoxide (CO) gas in inflamed joint microenvironment. This molecular probe self-assembles into a biocompatible nanoprobe, which is subsequently conjugated with anti-IL-6R antibody to afford active-targeting ability of RA. The nanoprobe exhibits significant turn-on NIR-II fluorescence signal at the RA lesion, enabling highly sensitive RA diagnosis and real-time therapeutic monitoring. The combination of ROS scavenging, on-demand CO gas release, and IL-6 signaling blockade results in potent therapeutic effect and synergistic immunomodulation impact, significantly alleviating the RA symptoms and preventing joint destruction. This research introduces a novel paradigm for the development of high-performance, activatable theranostic strategies to facilitate precise detection and enhanced treatment of RA-related diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.