Abstract

Energy harvesting from vibrations provides power to low‐energy‐consuming electronics for standalone and wearable devices as well as for wireless and remote sensing. In this contribution, compact tubular ferroelectret energy harvesters utilizing a single‐tube design are presented. Such single‐tube harvesters can be fabricated from commercially available fluorinated ethylene propylene (FEP) tubes with wall thicknesses of 25 and 50 μm, respectively, by mechanical deformation at elevated temperature. It is demonstrated that the generated power is highly dependent on parameters such as wall thickness, load resistance, and seismic mass. Utilizing a seismic mass of 80 g at resonance frequencies around 80 Hz and an input acceleration of 1 × g (9.81 m s−2 rms), output powers up to 300 μW can be reached for a transducer with 25 μm thick walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call