Abstract

Nanoparticulate complexes of plasmid DNA (pDNA) with cationic liposomes/polymer, of approx 200 nm diameter, were encapsulated with a high degree of efficiency within calcium pectinate gel beads. Electron microscopy showed the DNA nanocomplexes to be evenly distributed throughout the gel matrix. Controlled release of pDNA-lipid nanocomplexes was achieved by the action of pectinase enzymes, whereas release of naked and polymer-complexed DNA was found to be more greatly influenced by the swelling behavior of the polysaccharide matrices in buffer alone. Physical degradation of pDNA within pectin beads was found to be accelerated during bead drying, most probably as a result of shear forces generated within the gel matrices by the evaporation of water. Plasmid complexation with cationic liposomes provided a greater degree of protection for the DNA during bead drying than complexation with cationic polymer, and was shown to successfully transfect cultured cells after release from the beads, via the action of pectinase. Observations concerning the physical stability of nanocomplexed pDNA, and its encapsulation within and release from pectin gel beads, are discussed with reference to the electrostatic interactions existing between the various components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.