Abstract
Osteoarthritis is a disease that attacks human bones especially in older people and usually non-steroidal antiinflammatory drugs are being prescribed for patients with Osteoarthritis. These kinds of drugs usually have low aqueous solubility, dissolution and bioavailability. In order to maximize their therapeutic effects, these properties should be develped and enhanced. The purpose of this study was to reduce the particle size of ibuprofen by forming microparticles and thus enhance its dissolution rate. Ibuprofen was encapsulated into a polymer (polyvinylpyrrolidone) using supercritical fluid technology (supercritical CO2) to form drug-polymer microparticles. Dissolution rate and surface characteristics of the prepared drug-polymer microparticles were measured using various characterization techniques such as fourier transform infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV), transmission electron microscopy (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Various drug-polymer formulations were prepared depending on the operating conditions (i.e., different temperatures, pressures, flow rates and different drug solution:CO2 volume ratio). Results from TEM images and FTIR graphs showed that microparticles were successfully prepared. Different conditions gave different morphologies of drug-polymer microparticles as was confirmed using SEM analysis. Finally, dissolution rate of the drug-polymer microparticles in a simulated gastric fluid showed a promising result and better drug release controll over extended period of two hours in comparesion with uncapsulated Ibuprofen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Engineering & Process Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.