Abstract

Colored corn pericarp contains unusually high amounts of industrially valuable phytochemicals, such as anthocyanins, flavanols, flavonoids, and phenolic acids. Polyphenols were extracted in an aqueous solution and spray-dried to produce microencapsulates using four carrier materials, namely, maltodextrin (MD), gum arabic (GA), methylcellulose (MC), and skim milk powder (SMP) at three concentrations (1, 2, and 3 %, respectively). The encapsulates were evaluated for their polyphenolic contents using spectrophotometric techniques and HPLC analyses, and their antioxidant properties were evaluated using four different assays. The physicochemical properties of encapsulates were analyzed by measuring the zeta potential (ZP), particle size distribution, water solubility index (WSI), water absorption index (WAI), and color parameters. Structural and thermal properties were evaluated using Fourier transform infrared spectroscopy (FTIR), optical profilometry, and differential scanning calorimetry (DSC) analyses. Comparative analysis of structural characteristics, particle size distribution, zeta potential, WSI, WAI, and aw of the samples confirmed the successful formulation of encapsulates. The microencapsulates embedded with 1 % concentrations of MD, MC, GA, or SMP retained polyphenolic compounds and exhibited noteworthy antioxidant properties. The samples encapsulated with GA or MD (1 %) demonstrated superior physicochemical, color, and thermal properties. Comprehensive metabolomic analysis confirmed the presence of 38 phytochemicals in extracts validating the spray-drying process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.