Abstract

The storage of microorganisms in liquid form is the main drawback of commercializing epiphytic coffee yeasts. This work aimed to evaluate the fermentative performance of microencapsulated yeasts by spray drying in a coffee peel and pulp media (CPM). The yeasts, Saccharomyces cerevisiae CCMA 0543, Torulaspora delbrueckii CCMA 0684, and Meyerozyma caribbica CCMA 1738, were microencapsulated using maltodextrin DE10 (MD), high maltose (MA), and whey powder (WP) as wall materials. A Central Composite Rotational Design (CCRD) was used to investigate the effect of operating parameters on the microcapsules' cell viability, drying yield, and water activity. Yeasts reached cell viability and drying yields above 90 and 50 %, respectively. WP maintained the cell viability of the three yeasts over 90 days of storage at room temperature (25 °C) and was selected as a wall material for the three yeasts. M. caribbica showed to be more sensitive to spray drying and less resistant to storage. Some differences were found in the fermentation of the CPM medium, but the microencapsulated yeasts maintained their biotechnological characteristics. Therefore, the microencapsulation of epiphytic coffee yeasts by spray drying was promising to be used in the coffee fermentation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call