Abstract

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them, β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process of β-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10 μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higher β-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study of β-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.

Highlights

  • Carotenoids, which are synthesized by fruits and vegetables, are a family of hydrophobic pigmented compounds that structurally exist as hydrocarbons or their oxygenated derivatives

  • The aim of this work was to go further and study the encapsulation process of a model carotenoid molecule (β-carotene) by spray drying, using arabic gum as wall material, intending to evaluate simultaneously the effect of drying inlet temperature and the wall material concentration using the response surface methodology coupled with a central composite rotatable design

  • scanning electron microscopy (SEM) images have shown that the particles maintain a similar spherical-like shape with a smooth or wrinkled surface depending on the drying conditions (Figure 1)

Read more

Summary

Introduction

Carotenoids, which are synthesized by fruits and vegetables, are a family of hydrophobic pigmented compounds that structurally exist as hydrocarbons (carotenes) or their oxygenated derivatives (xanthophylls). They are natural compounds responsible for yellow, orange, and red colours in many foods [1,2,3]. 20 are present in human blood and tissues, such as β-carotene, α-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, α-cryptoxanthin, γ-carotene, neurosporene, and ζ-carotene [3,4,5] These carotenoids have been recognised as potent antioxidants in humans that may play a role in preventing many diseases such as cancer, heart disease, Alzheimer’s disease, Parkinson’s disease, hypertension, and diabetes [6, 7]. Vitamin A is an essential nutrient for functions such as embryonic development, cell differentiation, vision, immunity, and reproduction [8, 9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call