Abstract

This study investigates the use of cenospheres to encapsulate a low-cost, bio-based phase change material (PCM) derived from refined edible vegetable oil. Chemical etching was applied on the cenospheres to create holes through which melted PCM was loaded to produce a PCM microcapsule. Subsequently, a silica-based coating was applied to seal the perforations and prevent leakage of PCM from the microcapsule. Microstructural, chemical compatibility, thermal, and leakage properties of the produced silica coated PCM microcapsule (SCPCM) were assessed. No leakage was found for this new microcapsule, and higher thermal stability and conductivity were noted. Thermal decomposition of the PCM in SCPCM was delayed by about 16 °C attributable to the silica coating. An enhanced compressive strength performance was achieved at 10 vol% of sand replacement with SCPCM. 20–30 vol% replacement of sand with cenosphere microcapsules seems to be the optimal range for reasonable compressive strength. The workability of the mortar incorporated with SCPCM decreased when the replacement level increased to more than 30 vol% due to the hydrophilic nature of the silica deposit. This study has demonstrated the potential of cenospheres as inorganic shell for PCMs and the potential for incorporation of SCPCM into construction materials for thermal energy storage (TES).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.