Abstract

Alginate-polylysine microencapsulation has been proposed as a method of protecting transplanted pancreatic islets against immunological attack. Using this technique, prolonged graft survival has been reported in some diabetic animals. However, in the spontaneously diabetic insulin-dependent BB/E rat we found that intraperitoneal implantation of microencapsulated islets had only a short-lived effect on hyperglycaemia. Recovered microcapsules (both those implanted empty and containing islets) were surrounded by a foreign body type cellular overgrowth and, although many capsules remained intact, encapsulated islets were observed to be disintegrating. Loss of Beta cells was confirmed by immunohistology. Various polymer materials used in artificial membranes have been shown to activate macrophages involved in foreign body reactions and induce synthesis of interleukin-1 beta, a known Beta-cell toxin. Reduced secretion of insulin and progressive islet damage (indicated by a significant reduction in residual islet insulin and DNA content) were demonstrated when microencapsulated islets were incubated with interleukin-1 beta in vitro for 9 days. Similar effects were seen following exposure to a combination of gamma interferon and alpha tumour necrosis factor. Successful use of microencapsulation in islet transplantation depends upon the development of biocompatible membranes. The exclusion of smaller molecules, such as cytokines, which may be involved in foreign body mediated damage and microencapsulated islet graft rejection, could also be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call