Abstract

Our goal was to assess the efficacy of encapsulated allogeneic islets transplanted in diabetic NOD mice and streptozotocin (STZ)-diabetic nonhuman primates (NHPs). Murine or NHP islets were microencapsulated and transplanted in non-immunosuppressed mice or NHPs given clinically-acceptable immunosuppressive regimens, respectively. Two NHPs were treated with autologous mesenchymal stem cells (MSCs) and peri-transplant oxygen therapy. Different transplant sites (intraperitoneal [i.p.], omental pouch, omental surface, and bursa omentalis) were tested in separate NHPs. Graft function was monitored by exogenous insulin requirements, fasting blood glucose levels, glucose tolerance tests, percent hemoglobin A1c (% HbA1c), and C-peptide levels. In vitro assessment of grafts included histology, immunohistochemistry, and viability staining; host immune responses were characterized by flow cytometry and cytokine/chemokine multiplex ELISAS. Microencapsulated islet allografts functioned long-term i.p. in diabetic NOD mice without immunosuppression, but for a relatively short time in immunosuppressed NHPs. In the NHPs, encapsulated allo-islets initially reduced hyperglycemia, decreased exogenous insulin requirements, elevated C-peptide levels, and lowered % HbA1c in plasma, but graft function diminished with time, regardless of transplant site. At necropsy, microcapsules were intact and non-fibrotic, but many islets exhibited volume loss, central necrosis and endogenous markers of hypoxia. Animals receiving supplemental oxygen and autologous MSCs showed improved graft function for a longer post-transplant period. In diabetic NHPs and mice, cell-free microcapsules did not elicit a fibrotic response. The evidence suggested that hypoxia was a major factor for damage to encapsulated islets in vivo. To achieve long-term function, new approaches must be developed to increase the oxygen supply to microencapsulated islets and/or identify donor insulin-secreting cells which can tolerate hypoxia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.