Abstract

Room-temperature ionic liquids (RTILs), N,N,N-trimethyl-N-propyl ammonium bis(trifluoromethanesulfonyl) imide ([N(3111)][Tf(2)N]), were substituted for polar water and formed nonaqueous microemulsions with cyclohexane by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of [N(3111)][Tf(2)N]-in-cyclohexane (IL/O), bicontinuous, and cyclohexane-in-[N(3111)][Tf(2)N] (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of the IL microemulsions. The FTIR study of O-H stretching band of TX100 also supports this finding. The dynamics of solvent and rotational relaxation have been investigated in [N(3111)][Tf(2)N]/TX100/cyclohexane microemulsions using steady-state and time-resolved fluorescence spectroscopy as a tool and coumarin 480 (C-480) as a fluorescence probe. The size of the microemulsions increases with gradual addition of [N(3111)][Tf(2)N], which revealed from DLS measurement. This leads to the faster collective motions of cation and anions of [N(3111)][Tf(2)N], which contributes to faster solvent relaxation in microemulsions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.