Abstract
Phase behavior, dynamics, and structure of W/O microemulsions of the system aqueous solution/Synperonic 13_6.5/1-hexanol/isooctane were studied, with the goal of determining their effect on Mn-Zn ferrite nanoparticle formation, kinetics and characteristics. Microemulsion structure and dynamics were studied systematically by conductivity, dynamic light scattering (DLS), differential scanning calorimetry (DSC), and small-angle neutron scattering (SANS). The main effect of cosurfactant 1-hexanol was a decrease in microemulsion regions as compared to the systems without cosurfactant; nevertheless, overlap of microemulsion regions in the systems with precursor salts (PS) and precipitating agent (PA) was achieved at lower S/O ratios, compared to the system without cosurfactant. At 50 °C, PA microemulsions are nonpercolated, while PS microemulsions are percolated. SANS indicates small prolate ellipsoidal micelles with the absence of free water up to 18 wt % PS solution; DSC studies confirm the absence of free water in this composition range. Kinetic studies show an increase in the reaction rate with increasing concentration of the aqueous solution; but the most significant effect in reaction kinetics was noted when cosurfactant was used, regardless of microemulsion dynamics and structure. On the other hand, the main difference regarding the characteristics of the obtained nanoparticles was observed when bicontinuous microemulsions were used as reaction media which resulted in 8 nm nanoparticles, versus a constant size of ~4 nm obtained with all other microemulsions regardless of aqueous solution content, dynamics, and presence or absence of cosurfactant. The latter effect of constant size is attributed to the fact that the water present is dominantly bound to the EO units of the surfactant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.