Abstract

Two edible Water-in-Oil (W/O) dispersions, an emulsion that remains kinetically stable and a microemulsion which is spontaneously formed, transparent and thermodynamically stable, were developed for potential use as functional foods, due to their ability to be considered as matrices to encapsulate biologically active hydrophilic molecules. Both systems contained Medium Chain Triglycerides (MCT) as the continuous phase and were used as carriers of Hydroxytyrosol (HT), a hydrophilic antioxidant of olive oil. A low energy input fabrication process of the emulsion was implemented. The obtained emulsion contained 1.3% (w/w) of surfactants and 5% (w/w) aqueous phase. The spontaneously formed microemulsion contained 4.9% (w/w) of surfactants and 2% (w/w) aqueous phase. A comparative study in terms of structural characterization of the systems in the absence and presence of HT was carried out. Particle size distribution obtained by Dynamic Light Scattering (DLS) technique and interfacial properties of the surfactants’ layer, examined by Electron Paramagnetic Resonance (EPR) spectroscopy indicated the involvement of HT in the surfactant membrane. Finally, the proposed systems were studied for the scavenging activity of the encapsulated antioxidant toward galvinoxyl stable free radical showing a high scavenging activity of HT in both systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.