Abstract

AbstractThe ultimate objective of the project was to investigate the relationship between microemulsion phase behavior and detergency for oily soils. In this study, surfactant phase behavior was evaluated for hexadecane and motor oil as model oily soils. Producing microemulsions with these oils is particularly challenging because of their large hydrophobic character. To produce the desired phase behavior we included three surfactants with a wide range of hydrophilic/lipophilic character: alkyl diphenyl oxide disulfonate (highly hydrophilic), dioctyl sodium sulfosuccinate (intermediate character), and sorbitan monooleate (highly hydrophobic). This mixed surfactant was able to bridge the hydrophilic/lipophilic gap between the water and the oil phases, producing microemulsions with substantial solubilization and ultralow interfacial tension. The effects of surfactant composition, temperature, and salinity on system performance were investigated. The transition of microemulsion phases could be observed for both systems with hexadecane and motor oil. In addition, the use of surfactant mixtures containing both anionic and nonionic surfactants leads to systems that are robust with respect to temperature compared to single‐surfactant systems. Under conditions corresponding to “supersolubilization”, the solubilization parameters and oil/microemulsion interfacial tensions are not substantially worse than at optimal condition for a middle‐phase system, so a middle‐phase microemulsion is not necessary to attain quite low interfacial tensions. A potential drawback of the formulations developed here is the fairly high salinity (e.g., 5 wt% NaCl) needed to attain optimal middle‐phase systems. The correlation between interfacial tension and solubilization follows the trend predicted by the Chun‐Huh equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call