Abstract

Here we introduce microelectrospotting as a new approach for preparation of protein-selective molecularly imprinted polymer microarrays on bare gold SPR imaging chips. During electrospotting both the gold chip and the spotting tip are electrically connected to a potentiostat as working and counter electrodes, respectively. The spotting pin encloses the monomer-template protein cocktail that upon contacting the gold surface is in-situ electropolymerized resulting in surface confined polymer spots of ca. 500 µm diameter. By repeating this procedure at preprogrammed locations for various composition monomer-template mixtures microarrays of nanometer-thin surface-imprinted films are generated in a controlled manner. We show that the removal and rebinding kinetics of the template and various potential interferents to such microarrays can be monitored in real-time and multiplexed manner by SPR imaging. The proof of principle for microelectrospotting of electrically insulating surface-imprinted films is made by using scopoletin as monomer and ferritin as protein template. It is shown that microelectrospotting in combination with SPR imaging can offer a versatile platform for label-free and enhanced throughput optimization of the molecularly imprinted polymers for protein recognition and for their analytical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.