Abstract

The technology of microelectronic resistive gas sensors is considered. Heater and thermistor contacts are formed on an oxidized silicon substrate by sputtering a nichrome film and subsequent photolithography in combination with reactive magnetron sputtering of a nanocrystalline tin dioxide film with terbium and antimony additives. A 1.5 × 1.5 mm sensor requires 90 mW for heating to optimal working temperature of 250–280°C. The sensor has very high sensitivity to alcohols and low sensitivity to benzene and acetone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.