Abstract

This paper reports a micro-electro-mechanical (MEM) switch based on carbon nanotube (CNT) array-to-CNT array contact operating at high temperatures. The outstanding interfacial thermal stability of the CNT arrays allowed the successful operation of the switch at 300 °C, under which condition the solid-state transistors or metal-based MEM switches would not be functioning. Our device operated as an n-type MEM switch by forming an air gap based on the intended stiction induced by the wet processes and the recovery after the synthesis of CNTs. Additionally, we investigated the possible degradation in switching behavior and the change in contact resistance at various temperatures. The switch exhibits stable and repetitive operations over 1,000 cycles at 300 °C under hot-switching conditions in nitrogen at atmospheric pressure without a significant change in the switching characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call