Abstract

Despite widespread use of the contact electrode for recording monophasic action potentials (MAPs) in both clinical and experimental research, the mechanism underlying the genesis of the contact MAP remains unproven. The "Franz hypothesis" assumes that the MAP is driven by a current source originating at the boundary between cells depolarized by the MAP electrode pressure and normal cells immediately adjacent to it. To date, no direct experimental data exist to support this hypothesis. In 10 Langendorff-perfused mouse hearts, a miniaturized MAP probe was inserted into the right ventricle (RV) and gently pressed against the endocardium of the upward-facing RV free wall. During stable contact and stable MAP recording, KCl-filled glass microelectrodes were lowered from above the RV to record transmembrane action potentials (TAPs) at the center of and 0.05 and 0.2 mm outside the perimeter of the MAP electrode contact site. TAPs at the center had normal resting potentials (RP) in epicardial layers (-78 +/- 4 mV) but showed gradual decrease toward deeper layers, reaching a minimum RP of -23 +/- 0.8 mV directly above the MAP electrode surface. RPs at 0.05 mm outside the MAP perimeter were normal at the epicardial surface and with increasing transmural depth showed significantly less decrease than central recordings (min RP -41 +/- 0.8 mV, n = 11, P < 0.00001). TAPs at 0.2 mm from the MAP electrode perimeter had normal RPs across the entire RV wall. These direct data are the first to support the hypothesis that the MAP is generated locally through pressure depolarization of a circumscript volume of cells that (1) has sharp voltage gradients toward normal cells, (2) provides a strong local current source, and (3) when simulated with a circuit model creates the field potential recorded by the contact MAP electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.