Abstract

The reaction of superoxide with carbon dioxide is studied using voltammetry and potential step chronoamperometry at polycrystalline gold disk microelectrodes in a DMSO electrolyte. In agreement with prior work, it is found that a reaction occurs between the superoxide anion radical and carbon dioxide, effectively precluding their simultaneous detection at low levels of carbon dioxide. The reaction rate is found to be first-order with respect to both carbon dioxide and superoxide, consistent with an ECE or DISP1 type process. A rate constant is determined for this reaction based upon two independent methods: fast scan cyclic voltammetric measurements and steady-state voltammetric signals. These methods yield a consistent rate constant of 3.7 ± 1.6 × 105 M-1 s-1. Potential step chronoamperometric measurements reveal that oxygen adsorbs onto a gold electrode surface, to form a monolayer both in the presence and absence of carbon dioxide. A rate constant for the reduction of surface-bound oxygen to superoxide is reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call