Abstract

Electrical Impedance Tomography (EIT) has the potential to be able to observe functional tomographic images of neural activity in the brain at millisecond time-scales. Prior modelling and experimental work has shown that EIT is capable of imaging impedance changes from neural depolarisation in rat somatosensory cortex. Here, we investigate the feasibility of EIT for imaging impedance changes using a stereotaxically implanted microelectrode array in the thalamus. Microelectrode array EIT was simulated using an anatomically accurate marmoset brain model. Impedance imaging was validated and detectability estimated using physiological noise recorded from the marmoset visual thalamus. The results suggest that visual-input-driven impedance changes in visual subcortical bodies within 300 μm of the implanted array could be reliably reconstructed and localised, comparable to local field potential measurements. Furthermore, we demonstrated that microelectrode array EIT could reconstruct concurrent activity in multiple subcortical bodies simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.