Abstract

My laboratory studies the structures of membrane proteins that are important in maintaining homeostasis in the brain. Understanding structure (and hence function) requires scientists to build an atomic resolution map of every atom in the protein of interest, that is, an atomic structural model of the protein of interest captured in various functional states. In 2013 we unveiled the method MicroED, electron diffraction of microscopic crystals, and demonstrated that it is feasible to determine high-resolution protein structures by electron crystallography of three-dimensional crystals in an electron cryo-microscope (CryoEM). The CryoEM is used in diffraction mode for structural analysis of proteins of interest using vanishingly small crystals. The crystals are often a billion times smaller in volume than what is normally used for other structural biology methods like x-ray crystallography. In this seminar I will describe the basics of this method, from concept to data collection, analysis and structure determination, and illustrate how samples that were previously unattainable can now be studied by MicroED. I will conclude by highlighting how this new method is helping us understand major brain diseases like Parkinson's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.