Abstract
The Microdosimetric d(z) Model was used in combination with simulated microdosimetric specific energy probability distributions for monoenergetic 1H and 4He ions (energy range = 0.1–1000 MeV/n, target size range = 1–2000 nm) to investigate the possibility of modeling the relative efficiency of two optical absorption (OA) bands (4.77 and 5.08 eV) in the OA energy spectra of LiF:Mg,Ti (TLD-100) thermoluminescent detectors. This work represents the first application of the model to a physical system other than thermally- and optically-stimulated luminescence.The 4.77 eV OA trap is populated by electrons liberated during irradiation and its experimental OA relative efficiency was successfully predicted using a target size of 9 nm in the simulations. On the other hand, the model was not able to reproduce the values of the experimentally-observed proton induced OA efficiency above unity for the 5.08 eV OA band associated with the F centers in LiF:Mg,Ti (electron occupied Fluoride vacancy). The F centers are initially present in the LiF lattice but are also created by the irradiation. Since the absence of defect creation by the irradiation is a necessary condition of the microdosimetric model, the discrepancy between the model results for the F band and the experimental data was not unexpected.The calculations for both OA bands are presented as a function of the particle energy and the simulated microdosimetric target size and will be useful in further applications of the model OA relative efficiencies for charged particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.