Abstract

Inverse synthetic aperture radar (ISAR) imaging for the target with micro-motion parts is influenced by the micro-Doppler (m-D) effects. In this case, the radar echo is generally decomposed into the components from the main body and micro-motion parts of target, respectively, to remove the m-D effects and derive a focused ISAR image of the main body. For the sparse aperture data, however, the radar echo is intentionally or occasionally under-sampled, which defocuses the ISAR image by introducing considerable interference, and deteriorates the performance of signal decomposition for the removal of m-D effects. To address this issue, this paper proposes a novel m-D effects removed sparse aperture ISAR (SA-ISAR) imaging algorithm. Note that during a short interval of ISAR imaging, the range profiles of the main body of target from different pulses are similar, resulting in a low-rank matrix of range profile sequence of main body. For the range profiles of the micro-motion parts, they either spread in different range cells or glint in a single range cell, which results in a sparse matrix of range profile sequence. From this perspective, the low-rank and sparse properties are utilized to decompose the range profiles of the main body and micro-motion parts, respectively. Moreover, the sparsity of ISAR image is also utilized as a constraint to eliminate the interference caused by sparse aperture. Hence, SA-ISAR imaging with the removal of m-D effects is modeled as a triply constrained underdetermined optimization problem. The alternating direction method of multipliers (ADMM) and linearized ADMM (L-ADMM) are further utilized to solve the problem with high efficiency. Experimental results based on both simulated and measured data validate the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call