Abstract

This paper presents a reusable microdispenser intended for continuous flow dispensing of variable and controlled volumes of liquid against high back-pressures. The microdispenser consists of two active valves and a dispenser chamber, all actuated by the volume change associated with the solid-to-liquid phase transition of paraffin wax. It is fabricated using stainless steel sheets, a flexible printed circuit board, and a polyimide membrane. All are covered with Parylene C for insulation and fusion bonding at assembly. A finite element method (FEM) model of the paraffin actuator is used to predict the resulting flow characteristics. The results show dispensing of well-defined volumes of 350 and 540 nL, with a good repeatability between dispensing sequences, as well as reproducibility between devices. In addition, the flow characteristics show no back-pressure dependence of the dispensed flow in the interval 0.5-2.0 MPa. The FEM model can be used to predict the flow characteristics qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.