Abstract

Classical antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRIs) display several disadvantages, e.g., the onset of action (2 to 3 weeks) to start clinical benefits is too long, and a significant proportion of patients do not respond to this monotherapy. Several strategies have been proposed to overcome these problems, notably the use of potentiating agents, which combined with SSRIs, augment or accelerate their established antidepressant activity. Recent clinical trials proposed that compounds with dual action on both central serotonin (5-HT) and noradrenaline (NA) systems would have a faster action than SSRIs alone. Preclinical electrophysiological and neurochemical studies demonstrated that the putative new class of antidepressants, substance P (neurokinin 1) NK1 receptor antagonists, enhance brain monoaminergic neurotransmissions by reducing the sensitivity of 5-HT1A autoreceptors in the Dorsal Raphe Nucleus, and possibly alpha2 autoreceptors in the Locus Coeruleus. However, in several clinical studies, a similar delay of therapeutic effects has been reported with NK1 receptor antagonists and SSRIs. Recently intracerebral in vivo microdialysis studies were performed to examine the effects of genetic or pharmacological blockade of Substance P (SP)/ NK1 neurotransmission on SSRIs-induced increases in extracellular 5-HT levels in awake, freely moving mice. New evidences suggest that the combination of a NK1 receptor antagonist with a SSRI should benefit to depressed patients. This review describes our current knowledge of the role of SP and its preferred NK1 receptors mainly in the modulation of brain serotonergic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call