Abstract

This study reports a new perfusion-based, micro three-dimensional (3-D) cell culture platform for drug testing using enabling microfluidic technologies. In this work, a perfusion-based, micro 3-D cell culture platform is designed and is fabricated based on SU-8 lithography and polydimethylsiloxane (PDMS) replication processes. One of the key features of the system is that the incorporation of a multiple medium pumping mechanism, consisting of 15 membrane-based pneumatic micropumps with serpentine-shape (S-shape) layout, coupled with a pneumatic tank, into the micro 3-D cell culture platform to provide efficient and economical culture medium delivery. Moreover, a “smart cell/agarose (scaffold) loading mechanism” was proposed, allowing the cell/3-D scaffold loading process in one step and avoiding too much laborious works and manual error. The results show that in all of the 15 S-shape pneumatic micropumps studied, the medium delivery mechanism is able to provide a uniform flow output ranging from 5.5 to 131 μl/hr depending on the applied pulsation frequency of the micropumps. In addition, the cell/agarose (scaffold) loading mechanism was proved to be able to perform sample loading tasks precisely and accurately in all of the 15 microbioreactors integrated. Furthermore, anti-cancer drug testing was successfully demonstrated using the proposed culture platform and fluorescent microscopic observation. As a whole, because of miniaturization, not only does this perfusion 3-D cell culture platform provide a homogenous and steady cell culture environment, but it also reduces the need for human intervention. Moreover, due to the integrated pumping of the medium and the cell/agarose (scaffold) loading mechanisms, time efficient and economical research work can be achieved. These characteristics are found particularly useful for high-precision and high-throughput 3-D cell culture-based drug testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call