Abstract

ObjectiveThe current study aimed to develop a reliable targeted array comparative genomic hybridization (aCGH) to detect microdeletions and microduplications in congenital conotruncal defects (CTDs), especially on 22q11.2 region, and for some other chromosomal aberrations, such as 5p15-5p, 7q11.23 and 4p16.3.MethodsTwenty-seven patients with CTDs, including 12 pulmonary atresia (PA), 10 double-outlet right ventricle (DORV), 3 transposition of great arteries (TGA), 1 tetralogy of Fallot (TOF) and one ventricular septal defect (VSD), were enrolled in this study and screened for pathogenic copy number variations (CNVs), using Agilent 8 x 15K targeted aCGH. Real-time quantitative polymerase chain reaction (qPCR) was performed to test the molecular results of targeted aCGH.ResultsFour of 27 patients (14.8%) had 22q11.2 CNVs, 1 microdeletion and 3 microduplications. qPCR test confirmed the microdeletion and microduplication detected by the targeted aCGH.ConclusionChromosomal abnormalities were a well-known cause of multiple congenital anomalies (MCA). This aCGH using arrays with high-density coverage in the targeted regions can detect genomic imbalances including 22q11.2 and other 10 kinds CNVs effectively and quickly. This approach has the potential to be applied to detect aneuploidy and common microdeletion/microduplication syndromes on a single microarray.

Highlights

  • Congenital heart diseases (CHDs) was one of the most common congenital malformation types, occurring in 5.7-7.8‰ of live births and 12.5‰ of preterm fetus [1,2]

  • Copy number variations (CNVs) of chromosomal region 22q11.2 are associated with a portion of patients with CHDs

  • Subjects Ten cases who were already known of Velo-cardio-facial syndrome (VCFS) and 2 cases of cri du chat syndrome which deletion or duplication were confirmed by multiplex ligationdependent probe amplification (MLPA) P250 kit, were tested by targeted array comparative genomic hybridization (aCGH) in order to compare results of aCGH and MLPA

Read more

Summary

Introduction

Congenital heart diseases (CHDs) was one of the most common congenital malformation types, occurring in 5.7-7.8‰ of live births and 12.5‰ of preterm fetus [1,2]. A number of complex, multifactorial genetic and environmental influences have been cited as the causes of CHDs [3]. There are numerous reports suggesting that 75-85% of patients suffering from the 22q11.2 deletion syndrome present CHDs; most of them are congenital conotruncal defects (CTDs) [4]. A substantial number of patients with CTDs have a 22q11.2 deletion [5].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.