Abstract

Some species of cyanobacteria synthesize toxins whose concentration during water bloom can reach values dangerous for human and animal health. Planktonic cyanobacteria are the most common and well-studied microcystins producers, hepatotoxic cyclic heptapeptides, whereas microcystin-producing benthic cyanobacteria are less known. In recent years, the mass development of benthic cyanobacteria forming extensive fouling on different substrates has been detected in the littoral zone of Lake Baikal. We found microcystins produced by benthic cyanobacteria in the biofouling on different natural and artificial substrates, including diseased and dead endemic sponges Lubomirskia baicalensis and Baikalospongia spp. collected from the littoral area of Lake Baikal. Microscopic analysis of the biofouling revealed prevalence of representatives of Nostocales and Oscillatoriales with predominance of Tolypothrix distorta that is likely the main microcystin producer in Lake Baikal. According to enzyme-linked immunosorbent assay (ELISA), microcystin concentrations in biofouling were 29.8–3050 μg/kg dry weight. We identified eight microcystin variants using MALDI-TOF/TOF; [Dha7]MC-YR was detected in most samples. The presence of microcystins in biofilms formed on the surface of the artificial substrate by Phormidium autumnale was also recorded. The data obtained demonstrated the necessity to monitor potentially toxic species and concentrations of cyanotoxins in plankton and benthos in the littoral zone of Lake Baikal, especially in the regions with intense tourist and recreational activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.