Abstract

There is increasing evidence for the induction of programmed cell death (PCD) in vascular plants by the cyanobacterial toxin microcystin-LR (MC-LR). Our aim was to detect the occurrence of PCD-related DNA strand breaks and their possible connections to specific nuclease and protease activities. DNA breaks were studied by the deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method in the photoperiodically grown dicot model of white mustard (Sinapis alba). In-gel nuclease and protease activity assays showed changes in the activities of specific isoenzymes during treatments with MC-LR. Strand breaks occurred both in the developing root epidermis and cortex. Several isoenzyme activities were related to these breaks, for example: an increase in the activity of neutral 80–75 kDa, acidic high MW (100–120 kDa) and, most importantly, an increase in the activity of neutral 26–20 kDa nucleases, all of them having single-stranded DNA cleaving (SSP nuclease) activities. Increases in the activities of alkaline proteases in the 61–41 kDa range were also detected and proved to be in relation with MC-LR-induced PCD. This is one of the first pieces of evidence on the correlation of PCD-related DNA strand breaks with specific hydrolase activities in a model dicot treated with a cyanobacterial toxin known to have environmental importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.