Abstract
Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.